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Abstract

Power and energy efficiency are major concerns in fu-
ture supercomputing systems. We expect that applica-
tions will be constrained to operate under a power bud-
get and achieving the expected levels of performance will
be challenging. Understanding how power is consumed
by an application throughout its different phases will be
necessary to shift power to those resources on the critical
path. In this paper, we identify opportunities for shifting
power between components for a representative kernel of
explicit hydrodynamics codes. Based on a linear regres-
sion model, we dynamically throttle the memory system
in regions with low memory bandwidth requirements on
an energy-efficient supercomputer. Our results show that
we can save a significant amount of power that could be
used on resources on the critical path and, thus, maxi-
mize performance under the operating power budget.

1 Introduction

Power and energy efficiency are major concerns in fu-
ture supercomputing systems. We expect that high-
performance computing (HPC) applications will be con-
strained to operate under a power budget and, thus,
achieving the expected levels of application performance
will be challenging. Furthermore, because of the com-
plexity of these applications, the computational require-
ments within a given code may vary on a per-physics and
per-phase basis dynamically and across different prob-
lem sizes and input sets. Given this environment, we
need a better understanding of the computational require-
ments of applications so that we can distribute and real-
locate power selectively to those system components that
an application really needs.

In this work, we identify and analyze opportunities
for distributing power among system components on a
supercomputer system to improve the performance of a
representative kernel of explicit hydrodynamics codes at

the U.S. Department of Energy (LULESH). Using an
energy efficient supercomputer architecture, IBM Blue
Gene/Q (BG/Q), we throttle the memory system on a
per-region basis according to a linear regression model
based on performance counters. We envision that in
future machines, advanced runtime systems will shift
power from the memory system to the CPU, for example,
in regions with high locality and low demand for mem-
ory bandwidth. Although BG/Q does not allow redirect-
ing power from one subsystem to another, our objective
is to identify opportunities where this may be possible.
We demonstrate that even with a simple linear regres-
sion model we can save up to 20% of dynamic power
with a marginal effect on performance. This power could
be used by other system components on the critical path
and, thus, maximize performance under the given power
budget.

2 Related work

Adjusting operating voltage and frequency is a well-
known approach to improve power and energy efficiency.
Curtis-Maury et al. [3] optimized power consumption via
CPU DVFS and dynamic concurrency throttling using a
performance prediction model based on hardware coun-
ters. Lim et al. [9] also used CPU DVFS in a similar man-
ner. Miftakhutdinov et al. [11] extended this approach by
considering a realistic memory system with a streaming
prefetcher. Deng et al. [5] proposed a scheme to reduce
energy consumption by applying DVFS to the memory
controller and DFS to memory channels. David et al. [4]
also studied memory DVFS and its impact on power con-
sumption. These two memory studies relied on simula-
tion or replying an analytical model because of the lack
of an interface to dynamically change memory speeds.
Chang et al. [2] investigated the impact on both perfor-
mance and energy consumption from memory bandwidth
scaling, but not from DVFS directly. Malladi et al. [10]
used mobile DRAM memory in data centers to improve



energy efficiency. In our work, we adjust the speed of
memory dynamically based on an application’s needs.
To the best of our knowledge, this is the first study that
employs memory throttling on a supercomputer system
for explicit hydrodynamics codes.

Code phase based analysis is becoming useful for opti-
mizing performance. Servat et al. [12] presented a mech-
anism to map source code to performance. Similarly,
our work characterizes program behavior from hardware
counters; we use this information to predict the minimal
memory frequency per code region. However, our appli-
cation regions are driven by domain scientist knowledge.
In general, the behavior of complex physics packages is
difficult to predict and, thus, hints from domain scientists
are necessary.

Our work is closely related to Bertran’s [1] and Fel-
ter’s [6]. Bertran et al. analyzed the potential power
and performance benefits of implementing gating mech-
anisms in the network and memory links for a set of
HPC benchmarks. The authors quantified memory and
network idle times and estimated, analytically, the bene-
fits of shifting power to the processor. Using simulation,
Felter et al. used power shifting to improve system ef-
ficiency, reduced power or increased performance, for a
set of SPEC benchmarks. In our work, we employ real
memory throttling on a supercomputer system to iden-
tify power shifting opportunities for HPC hydrodynam-
ics codes. Our throttling policy is based on a linear re-
gression model of performance and applied on a per ap-
plication’s phase basis.

3 LULESH

The Livermore Unstructured Lagrange Explicit Shock
Hydrodynamics (LULESH) mini-app [7] provides a sim-
plified source code that contains the data access patterns
and computational characteristics of larger hydrodynam-
ics codes. It uses an unstructured hexahedral mesh with
two centerings and solves the Sedov problem. We chose
it for this study because explicit hydrodynamics can con-
sume up to one third of the compute cycles at the U.S.
Department of Defense data centers.

From an application developer’s perspective,
LULESH can be divided into code phases or re-
gions according to the physics performed [7]. This
code breakdown allows us to understand changes in
performance, power, and energy from one region to the
next. On a multi-physics code, in addition to regions,
we would be interested in changes between physics
packages.

In this work, we study five regions that account for
over 90% of the execution time of LULESH and present
a diverse set of properties: Region 1 performs the
stress calculation routines; Region 2 performs the hour-

glass calculation; Region 3 consists of two memory-
bound loops that update the velocity and position of
nodes; Region 4 includes CalcKinematicsForElems

and CalcMonotonicQForElems, which gather val-
ues from nodes to element centers followed by
compute-intense calculations; and Region 5 includes
MonotonicQforRegions and MaterialApply, which
have a significant amount of control flow instructions and
instructions with dependencies.

4 Memory throttling on BG/Q

In this section, we introduce BG/Q’s memory throttling
and its impact on system performance. A BG/Q compute
node consists of a chip with 16 A2 user cores and 16 GB
of SDRAM-DDR3 memory. Each core has four SMT
threads and runs at 1.6 GHz. Each chip has a 32-byte,
1.33 GHz interface to memory for a peak read+write
bandwidth of 42 GB/s.

BG/Q provides a built-in hardware feature on the DDR
controller that introduces higher delays or idle cycles
between each read and write to DDR. A user appli-
cation can adjust this number, to slowdown the mem-
ory bus (and save power), as a parameter to the func-
tion Kernel SetPowerConsumptionParam. This value
ranges between 0 and 126 and can be specified at a node
granularity. Each idle cycle is 1 DDR cycle at 1.33 GHz.

4.1 Impact on bandwidth and runtime

We ran the STREAM benchmark (copy, scale, add, and
triad) with 16 threads on a BG/Q node to quantify the im-
pact of memory throttling on bandwidth. The maximum
bandwidth achieved under different memory speeds is
shown in Figure 1. In the baseline case, we do not throt-
tle the memory system (memory at full speed). As ex-
pected, as we add more idle cycles to the memory con-
troller, memory bandwidth decreases.

0

5

10

15

20

25

30

baseline 1 2 4 8 16 32 64

B
an

d
w

id
th

 (
G

B
/S

)

Number of DDR Idle Cycles

Copy: Scale: Add: Triad:

Figure 1: Effect of throttling on memory bandwidth.

We also measured the impact of throttling on the ex-
ecution time of LULESH. Although we run experiments
for all five regions, Figure 2 focuses on regions 3 and
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4, which exemplifies the different computational char-
acteristics across regions. As this figure shows, region
3 is more sensitive to memory bandwidth than region
4. As explained in Section 3, region 3 consists of two
memory-bound loops that update the velocity and posi-
tion of nodes. Region 3 shows degradation in perfor-
mance between 8 and 16 idle cycles, while region 4 be-
tween 32 and 64. We will show later that we can use a
simple model, based on performance counters, to predict
the highest number of idle cycles to add, on a per-region
basis, with a marginal effect on performance. The saved
power could be shifted to other subsystems to improve
performance.
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Figure 2: Effect of throttling on LULESH’s execution time for
input size 90 (903 elements) and 48 threads.

4.2 Memory throttling latency
We now quantify how long it takes for an application to
observe changes in memory speed as a result of execut-
ing Kernel SetPowerConsumptionParam. This is im-
portant to understand when memory throttling can and
cannot be used. If the latency is too long, throttling may
not be applicable to short-lived regions.

We used STREAM again to exercise the memory sys-
tem and allocated a separate tracer thread to measure
memory bandwidth at regular intervals of 1, 10, 100, and
1000 µs. Using the tracer thread, we throttled the mem-
ory system and quantified the number of intervals it took
to observe a difference in bandwidth. We found that an
effective change in bandwidth occurs between 1 to 10 µs.

5 Measuring power

BG/Q systems are capable of measuring power and en-
ergy at a node-board granularity. Each board includes
32 compute nodes and 2 direct current amperage (DCA)
modules. Each DCA has a microprocessor unit that
measures current and voltage of at most seven domains.
The compute nodes can read power/energy data via
the EMON2 (Environmental Monitoring version 2) API.
Through this API, a user application is able to retrieve
cumulative energy consumption at a given point in time.
With two snapshots, the EMON2 library computes the

energy difference and the average power consumption
for the given interval. In all of our experiments, we cap-
ture power and energy consumption every 10 ms of all
seven domains. We focus on the processor and mem-
ory since the other domains consume mostly the same
amount of power regardless of utilization (e.g., network
links are always on). More information on BG/Q’s high-
resolution power infrastructure and the proportions of
static and dynamic power can be found elsewhere [1, 8].

6 Predicting optimal memory speed

On a given application, some code regions may be mem-
ory intensive while some others computation intensive.
In those regions where computation is high and memory
utilization is low, we can throttle the memory system and
save power. If we can find the minimal memory speed for
a given region without decreasing performance, we could
reduce power and energy consumption.

The five code regions of LULESH have different com-
putation and memory characteristics. So is the case when
changing problem size1 and level of concurrency (num-
ber of threads). In Figure 3, we show the lowest amount
of throttling that can be applied to LULESH while main-
taing at least 95% of its performance compared to the
baseline (full memory speed). The top graph shows that
the minimal memory throttling is region and concurrency
dependent, while the lower graph shows that the minimal
throttling for region 4 is also problem size dependent.
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Figure 3: Optimal memory throttling as a function of concur-
rency for the LULESH regions and several problem sizes.

As shown in Figure 3, small problem sizes and low

1Problem size = X refers to an input of X3 elements in LULESH.
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levels of concurrency do not require high memory speeds
(low number of idle cycles). Regions 1, 2, and 3 are
more sensitive to memory bandwidth, while region 5 is
the least sensitive as it can absorb a high number of idle
cycles without affecting performance.

Thus, choosing the minimal memory speed is a func-
tion of several parameters including code region, prob-
lem size, and concurrency. To predict this optimal mem-
ory speed dynamically, we build a model based on per-
formance counters that captures the compute and mem-
ory requirements of LULESH.

6.1 Linear regression model
There are several hardware counters that can capture
the computation and memory behavior of an applica-
tion. The counters we chose include the number of
CPU cycles, number of floating-point instructions, num-
ber of load and store commands that missed the L1 data
cache, number of executed instructions, L2 cache misses,
misses in the prefetch buffer, and number of loads and
stores to main memory.

These counters are classified as either CPU or memory
related. The changes in problem size and level of concur-
rency can be observed through these counters. For exam-
ple, increasing number of threads can cause an increase
in memory bandwidth. We use these counters to predict
the optimal (minimal) memory speed fmin for each region
within an application. The model is defined as:

fmin =
N

∑
i=1

wi ∗
ci

cyc
(1)

where ci is a hardware counter value, wi is the coefficient
achieved by offline training, and cyc is the total number
of machine cycles executed. Since we consider multi-
ple counters in this model, we use multivariate regression
analysis to build the prediction model. Note that fmin cor-
responds to the number of idle cycles needed to throttle
the memory.

To train the model (offline), we ran LULESH over a
number of problem sizes, threads, and regions collecting
more than 400 samples. We focused on problem sizes of
45 and higher, because smaller problem sizes result in re-
gions (especially region 3) that are too small to quantify
their power draw.

Figure 4 shows the observed optimal memory speed
versus the one predicted from our model. Our model’s
accuracy is reasonable with an R2 value of 0.67, although
for some data samples the error is significant because the
relationship between LULESH’s execution time (charac-
terized by the chosen performance counters) and mem-
ory speed is not necessarily linear. However, most pre-
dicted data points are close to the observed values.
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Figure 4: Accuracy of our linear regression model.

7 Impact on performance and power

In this section, we quantify the impact of memory throt-
tling using our model on both performance and power.
We show that the power consumption of LULESH can
be reduced significantly with a marginal effect on perfor-
mance. Since the granularity of our power and energy
measurements is a node-board, we ran LULESH on 32
nodes: 1 process per node and 4 threads per core. We
dedicated one core per node for a tracer thread that mea-
sures power. In addition, we only report the dynamic
portion of power since we cannot change the amount of
standby power. We expect that standby power will use
a smaller fraction of the overall power in future memory
technologies (e.g., PCM).

7.1 Effect on performance

When we trained the regression model, we used a thresh-
old of 0.01. If our model is perfect, we should see no
more than 1% performance loss compared to the base-
line running at full memory speed. Our experiments
consist of running LULESH with our regression model,
which determines the number of idle cycles to inject on
a per-region basis. In the first three iterations of each re-
gion (LULESH is an iterative code), we collect hardware
counter data that is fed to the model to predict the opti-
mal number of idle cycles. We use this number to set the
memory speed for the remaining iterations. In Figure 5,
we show the performance overhead of our approach com-
pared to the execution time of the baseline configuration.

The problem sizes range from 70 to 140 and the num-
ber of threads from 44 to 60. In general, most of our pre-
dictions with higher number of threads are within 2% er-
ror. The performance loss is close to our desired thresh-
old value of 1%. Higher inaccuracies occur with the
smaller number of threads, i.e. 44 threads, because the
observed data points are not linearly distributed (see Fig-
ure 4). In future work we plan on using other models
that can capture non-linear behavior. However, even this
simple regression model provides a small amount of per-
formance degradation for most cases.
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Figure 5: Runtime performance degradation by throttling mem-
ory according to our model. Each data point includes the ag-
gregated overhead across all five regions.

7.2 Power and energy analysis
Our goal is to reduce as much power consumption as
possible by lowering the memory speed until the perfor-
mance loss reaches the given threshold. In this section,
we first show that memory speed can significantly affect
the power consumption of each LULESH region. Then,
we demonstrate that both memory power and the total
node-board power can be reduced based on our model
predictions under various LULESH configurations. Fi-
nally, we discuss the tradeoffs between performance and
power.

Figure 6 shows the power consumption of regions 1
and 4 under different memory speeds. We observe that
total board power, CPU power, and memory power all
drop significantly as we decrease memory speed. The
difference in power may be as large as 300 Watts for the
total board power. Although there is great potential to
reduce power, we must consider performance (or energy)
as well.
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Figure 6: Memory throttling’s effect on power for LULESH.

We now show what happens to the power consump-
tion, along with performance, using our model-based
prediction to throttle the memory of each region. Fig-
ure 7 shows how the performance, memory power,
and total board power change with different number of
threads based on our model’s memory speed prediction
for a problem size of 130. This figure shows that on the

44 threads configuration, our model prediction causes a
significant decrease in performance (less than 10%) with
almost no power savings. The total energy consumption
in this case is worse than the baseline. For the other
four thread configurations, our model prediction leads to
small performance loss (within 3%) and large memory
and total power savings. The total energy consumption
is significantly lower for these cases.
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Figure 7: Performance and dynamic power tradeoffs with
memory throttling using our regression model.

8 Conclusions and future work

In this work, we investigate opportunities for shifting
power between system components on a supercomputer
architecture for explicit hydrodynamics codes. Because
of the different computational characteristics within a
single application, we employ memory throttling on a
per region basis to save power on code regions with low
memory bandwidth requirements. To find the optimal
(lowest) memory speed for a given region without affect-
ing performance, we use a linear regression model based
on performance counters. Our results show that mem-
ory throttling can save up to 20% of dynamic power with
an average performance loss of 3%. This indicates that
power shifting on explicit hydrodynamics present signifi-
cant opportunities to improve performance within a fixed
power budget. Future work includes quantifying power
shifting opportunities on a range of HPC applications via
memory throttling and employing machine learning tech-
niques to capture non-linear behavior such as artificial
neural networks.
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[8] LEÓN, E. A., AND KARLIN, I. Characterizing the impact of
program optimizations on power and energy for explicit hydrody-
namics. In International Parallel & Distributed Processing Sym-
posium; Workshop on High-Performance, Power-Aware Comput-
ing (Phoenix, AZ, May 2014), HPPAC’14, IEEE.

[9] LIM, M. Y., PORTERFIELD, A., AND FOWLER, R. SoftPower:
Fine-grain power estimations using performance counters. In In-
ternational Symposium on High Performance Distributed Com-
puting (Chicago, IL, June 2010), HPDC’10, ACM.

[10] MALLADI, K. T., NOTHAFT, F. A., PERIYATHAMBI, K., LEE,
B. C., KOZYRAKIS, C., AND HOROWITZ, M. Towards energy-
proportional datacenter memory with mobile DRAM. In Interna-
tional Symposium on Computer Architecture (Portland, OR, June
2012), ISCA’12, ACM/IEEE.

[11] MIFTAKHUTDINOV, R., EBRAHIMI, E., AND PATT, Y. N. Pre-
dicting performance impact of DVFS for realistic memory sys-
tems. In International Symposium on Microarchitecture (Van-
couver, BC, Canada, Dec. 2012), MICRO-45, IEEE/ACM.

[12] SERVAT, H., LLORT, G., GONZALEZ, J., GIMENEZ, J., AND
LABARTA, J. Identifying code phases using piece-wise linear
regressions. In International Parallel & Distributed Processing
Symposium (Phoenix, AZ, May 2014), IPDPS’14, IEEE.

6


